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Abstract
Ultrafiltration membrane permeability may be restored by applying an electric
field parallel to the plane of the membrane in the feed compartment of ultrafiltration
cells. Two different electrode arrangements are described. Under some conditions,
flux restoration is complete. An electric field parallel to the membrane can thus
be used to eliminate membrane polarization and fouling.

INTRODUCTION

Ultrafiltration (UF) is used (1) to concentrate, to purify, and to frac-
tionate proteins, carbohydrates, synthetic polymers, and colloids of various
types. In every case, effuent flux declines with time due to retentate ac-
cumulation over the membrane. Membrane fouling (2) is troublesome and
decreases the efficiency of ultrafiltration. Mechanical and electrical meth-
ods have been proposed to counteract fouling and to improve separation
methods.

Electrophoresis combined with filtration was first proposed by Manegold
(3). Beechold (4) utilized a combination of electrophoresis and electroos-
mosis to purify colloids. Theoretical treatments have been done by Moulik,
Cooper, and Bier (5). Henry et al. (6) introduced a process they called
crossflow-electrofiltration; this process combines fluid shear due to cross-
flow filtration with electrophoresis. Radovich et al. (7) coupled electro-
phoresis with UF in order to increase the flux and improve selectivity in
protein purification. Grodzinsky and Weiss (8) presented a review of the
membrane separation process in which an electric field acts not only on
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the solutes to be transported but also on the membrane matrix itself.
Electroadsorption on porous electrodes was utilized by Soffer et al. (9) to
purify aqueous dispersions of colloidal particles. Recently, Bowen et al.
(10) described in-situ electrolytic membrane restoration, using electrical
pulses (0.92 kA'm~2 for 7.5 s) to clean up the membranes. In this case,
as well as in all the other cited methodologies, the membrane was mounted
between the electrodes; the electrical field was thus perpendicular to the
membrane plane, with one electrode in the feed compartment and the
other in the permeate side.

This paper shows that in-situ cleaning of ultrafiltration membranes can
be done even when both electrodes are mounted in the feed compartment.
This increases the versatility of electrical techniques for membrane recov-
ery.

EXPERIMENTAL

Materials

Granulated cellulose acetate was kindly supplied by Rhodia and iden-
tified by its FTIR spectrum. Its molecular weight was 3.5 x 10* daltons,
as obtained by viscosity measurements. Acetic acid and acetone were pur-
chased from Vetec. Blue Dextran, nominally of MW 2 x 10%, was from
Sigma. The water was deionized, doubly distilled, and its conductivity was
in the range of 3-3.5 ps.

Membrane Preparation

Asymmetric cellulose acetate membranes were prepared (11) by film
coagulation in water. The film was formed by spreading a solution of 56%
acetic acid, 18% acetone, and 26% water over glass plates. Spreader thick-
ness was 0.3 mm. Membrane thickness, determined with an optical micro-
scope, was 124 * 24 pm. The water flux was between 3.8 and 4.1
mL-min—!-cm~2 when the pressure was 2.5 kPa.

Apparatus

The membrane cell utilized in this work was made of an acrylic cylindrical
tube (Fig. 1). Two different electrode geometries were tested (Fig. 2). In
both cases the platinum electrodes were parallel and 4 mm away from the
membrane surface in the feed compartment. The membrane area was 6.34
cm?.

The feed solution was introduced through an upper inlet perpendicular
to the membrane surface. The driving force was a hydrostatic pressure of
2.5 m of liquid column (Fig. 3). The filtrate was collected into graduated
tubes, and volume measurements were made as a function of the time.
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Fic. 1. Membrane test cell: internal diameter = 2.84 cm, total length = 6.20 cm.
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FIG. 2. Electrode geometries used in this work: (A) circular, (B) parallel.
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FiG. 3. Experimental apparatus. 1: Feed reservoir. 2: Ultrafiltration cell. 3: Power supply.
4: Graduated tube for permeate volume measurement.

The dc voltage source was a Hewlett-Packard model 712B power supply
(0-500 V). All experiments were carried out at 25 *+ 1°C in an air-con-
ditioned room.

RESULTS

Visual Observations

Some experiments were carried out by using a carbon black dispersion
to allow visual observations. That procedure showed that particle migration
begins when the voltage is ~60 V. A larger portion of clean membrane
surface is obtained when the circular electrode is the anode. Figure 4
presents two membrane pictures: both show membranes used in carbon
UF, one of which was cleaned by switching on the electric field. Notice
that the particles were driven away from the membrane surface by the
electric field.
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(a)

(b)

FIG. 4. Membranes used in carbon UF. (a) Normal UF. (b) Electric field-coupled UF, circular
geometry.
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Flux Measurements

Blue dextran solutions were used for flux determinations. Water flux
was previously determined as a function of time; a typical result is shown
in Fig. 5(A). The characteristic filtration rate-time decay is registered for
a 0.025% Blue Dextran solution (Fig. 5B). The membrane retention is
100% for this solute (checked by absorbance readings at 650 nm). After
40 min the flux is half of the initial value. If the UF is carried out for 1 h,
a steady flux is obtained in the range of 1.5-1.8 x 1072 mL-min~'-cm~2,
that is, 30% of the initial flux. When the same Blue Dextran solution is
filtered but the voltage is applied after 60 min filtration, the flux returns
to the initial value and remains at this level for as long as the voltage is
on (Fig. 6). The time lag for flux restoration is ~20 min in this case. Field
interruption causes a new flux decline. The electric current is in the range
of 5 to 7 mA, which means a power consumption of less than 0.5 W. This
value can be decreased by a change in the electrode geometry. B geometry,
with its small area, gives a maximum current of 2.5 mA for 100 V. In this
case the coupled electrical field UF again shows flux restoration (Fig. 7),
but now a steady flux is soon obtained at values 1.48 and 1.74 times the
flux measured prior to turning on the voltage (for 100 and 150 V, respec-
tively). Flux restoration is thus voltage- and electrode-area dependent.
Flux is also increased if voltage is applied after longer ultrafiltration times,
up to 17 h (Fig. 8).

We have also attempted to fit electrodes over the membrane in a Mil-
lipore (b = S cm) ultrafiltration cell. Flux restoration by applied voltage
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FIG. 5. (A) Water flux through cellulose acetate membrane. (B) Flux decrease in Blue
Dextran ultrafiltration.
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F1G. 6. Electric field effect upon Blue Dextran UF (Geometry A).

was not observed in this case, perhaps due to the fins fitted in this cell
which prevent fluid motion parallel to the membrane.

DISCUSSION
Flux restoration during ultrafiltration can occur by coupling an electric
field perpendicular to the direction of permeate flow. Both electrodes are
located in the feed compartment.
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FIG. 7. Voltage effect on flux restoration (Geometry B).
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FIG. 8. Flux restoration by electrical field applied after different filtration running times (in
hours): (A) 2, (B) 3, (C) 17.

The results show that permeate flux can be restored up to the initial -
value, depending on geometry and voltage. The flux restoration rate also
depends on the same parameters. The resuits in Table 1 indicate that when
circular geometry is used, membrane fouling is counteracted more effi-
ciently; permeate flux returns to the initial value and the flux restoration
rate is higher than when using the other geometry. Two membrane pictures
are shown in Fig. 4: one was obtained after carbon UF and the other is
from a membrane utilized in a circular geometry cell after performing UF
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TABLE 1
Flux Restoration Rate and Restoration Factor R = J,/J; {J,, is the maximum
flux as restored by electrical field coupling and J, is the flux just before
turning on the electric field)

Previous

running V=1Jh
Voltage time (mL-min-%-cm~?%)
V) Geometry (h) x 10¢ R
60 A 1 3.2 1.94
100 B 1 2.8 1.31
150 B 1 4.8 1.50
100 B 2 25 1.34
100 B 3 1.8 1.32
100 B 17 1.7 2.63

assisted by a parallel electric field. These photos indicate that besides the
electrical potential used, the force field configuration is also important.
Figure 4(b) shows that the cleanest region over the membrane does not
correspond to the regions of higher fields (compare the electrode position
with Fig. 2A).

We first assumed that flux restoration occurs by particle electrophoresis
parallel to the membrane surface. Thus, at each voltage pulse a portion
of the membrane surface is freed of particles. Assuming that particle mo-
bilities are between 4 and 7 X 10~* cm?s~!-V~! and the average electric
field is S0 V-cm™?, we obtained stationary electrophoretic velocities be-
tween 0.20 and 0.035 cm's~!. On the other hand, particle migration ve-
locities due to vertical flux (which is in the range of 0.015 and 0.040
mL-min~!-cm~2) are between 0.9 and 2.4 cm-s~!. Therefore, particle dep-
osition velocities will always be greater than the electrophoretic tangential
velocity. Thus, factors other than particle electrophoresis are responsible
for membrane defouling. Some of them are: 1) electroosmotic fluid move-
ment in the neighborhood of the membrane surface, throughout the po-
larization layer, 2) turbulence in the fluid due to electric field gradients,
and 3) particle drag due to “slip-spin” forces (12) that act upon particles
flowing in a shear field.

In this work we utilized long pulses and low voltages. Recently Bowen
et al. (10) examined another electrical technique for membrane cleaning
during microfiltration. They made use of brief and intermittent field pulses
of high current, and they concluded that this can be economically viable.
This aspect of the technique described in this paper, as well as the question
of the actual mechanism of depolarization, will be the subject of future
work.
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